Heat transfer coefficient part of pipe in contact with ground

The heat transfer coefficient of ground is combining the inside film coefficient, heat transfer coefficient of pipe wall and heat transfer coefficient of soil.

The equation acc. Carslaw & Jaegers is used for $h_{buried}$ reaching a limit when $H$ → $D_{ext}/2$ using the quantity $e_{limit}$.

Symbol
$h_{ground}$
Unit
W/(K.m$^2$)
Formulas
$\frac{2k_4}{D_{ref}} \frac{1}{\cosh^{-1}\left(1+\frac{2e_{limit}}{D_{ext}}\right)}$Carslaw & Jaeger
$\frac{2k_4}{D_{ref}} \frac{2}{\beta_b \left(\pi-\beta_b\right)} \frac{C_{g1}}{\sqrt{{C_{g2}}^2-1}} \left(\frac{\pi}{2}-\\arctan\left(\sqrt{\frac{C_{g2}+1}{C_{g2}-1}} tan\left(\frac{\beta_b}{2}\right)\right)\right)$Morud & Simonsen $C_{g2}$ > 1
$\frac{2k_4}{D_{ref}} \frac{1}{\beta_b \left(\pi-\beta_b\right)} \frac{C_{g1}}{\sqrt{1-{C_{g2}}^2}} \ln\left(\frac{tan\left(\frac{\beta_b}{2}\right)+\sqrt{\frac{1-C_{g2}}{1+C_{g2}}}}{tan\left(\frac{\beta_b}{2}\right)-\sqrt{\frac{1-C_{g2}}{1+C_{g2}}}}\right)$Morud & Simonsen $C_{g2}$ ≤ 1
$\frac{2k_4}{D_{ref}} \frac{1}{\pi \left(1+\frac{\mathrm{Bi}_p}{\mathrm{Bi}_g}\right)} \frac{2\mathrm{Bi}_p sin\left(\beta_0\right) \\arctan\left(\sqrt{\frac{1-K_{par}}{1+K_{par}}}\right)}{\sqrt{1-{K_{par}}^2}}$Ovuworie $|K_{par}|$ < 1
$\frac{2k_4}{D_{ref}} \frac{1}{\pi \left(1+\frac{\mathrm{Bi}_p}{\mathrm{Bi}_g}\right)} \mathrm{Bi}_p sin\left(\beta_0\right)$Ovuworie $K_{par}$ = 1
$\frac{2k_4}{D_{ref}} \frac{1}{\pi \left(1+\frac{\mathrm{Bi}_p}{\mathrm{Bi}_g}\right)} \frac{2\mathrm{Bi}_p sin\left(\beta_0\right) \tanh^{-1}\left(\sqrt{\frac{K_{par}-1}{K_{par}+1}}\right)}{\sqrt{{K_{par}}^2-1}}$Ovuworie $K_{par}$ > 1
$\frac{2k_4}{D_{ref}} \frac{\mathrm{Bi}_p}{\left(\left(1+\frac{\mathrm{Bi}_p}{\mathrm{Bi}_g}\right) \left(1+2\mathrm{Bi}_p\right)\right)^{0.5}}$OTC 23033
Used in