Calculation Report

Title Verification Phase 2 case 04

Project Verification

Description

Created 2020-05-17 11:55 Solver 2020-03-31 (bc60f)

Arrangement

Arrangement type buried None Activated options Active systems Α

Statistics

Number of iterations of the solver N_{calc} 6 Sum of currents from all systems I_{sum} 690.8 A Sum of average conductor temperatures from all systems θ_{sum} 90.0 °C Number of overheated electrical systems 0 Sum of losses from all systems W_{sum} $75.2 \; W/m$

Systems

Following systems are active in the arrangement:

System	Object	Current I_c [A]	max Temp. $ heta_c \mid heta_e \ [^\circ extsf{C}]$	Losses W_{sys} [W/m]
System A	Verification Phase 2 case 01	690.8	90.0 75.3	75.2

Objects

Following objects are used:

Verification Phase 2 case 01

Ambient

Ambient temperature	$ heta_a$	20.0 °C
Thermal resistivity of soil	$ ho_4$	1.5 K.m/W
Ratio thermal resistivity dry/moist soil	$v_{\scriptscriptstyle 4}$	1.000

Backfill

Calculation method acc. El-Kady et al (1985)

Backfill Area 1

Thermal resistivity backfill	$ ho_b$	0.8 K.m/W
Horizontal center of backfill	x_b	0.0 mm
Vertical center of backfill	L_{b}	1000.0 mm
Height of the backfill	h_b	400.0 mm
Width of the backfill	w_b	1300.0 mm
Geometric factor for backfill	G_{b}	1.4835

Approximate steady-state temperature field [° C] with 1.267 K.m/W

System A (High voltage cable)

Ampacity

Name of cable

Verification Phase 2 case 01

Conductor current

$$\sqrt{\frac{-\Delta\theta_{d}-\Delta\theta_{p}v_{4}+\Delta\theta_{x}\left(v_{4}-1\right)-\theta_{a}+\theta_{c}}{R_{c}\left(T_{1}+T_{2}n_{c}\left(\lambda_{1}+1\right)+\lambda_{3}n_{cc}\left(\frac{T_{4ii}}{2}+T_{4\mu}v_{4}\right)+\left(T_{3}n_{c}+n_{cc}\left(T_{4i}+T_{4ii}+T_{4\mu}v_{4}\right)\right)\left(\lambda_{1}+\lambda_{2}+1\right)\right)}}}$$
 Operating voltage
$$\underbrace{U_{o} \qquad 110.0 \text{ kV}}$$

50.0 Hz System frequency 3

Number of sources in system Number of conductors combined 3

 $N_c n_c$

Load

Continuous load LF1.0 p.u.

Temperatures

Temperature of conductor 90.0 °C

 $\Delta\theta_c + \Delta\theta_p v_4 - \Delta\theta_x \left(v_4 - 1\right) + \theta_a$

Temperature of screen/sheath 77.0 °C

 $-T_1\left(W_c+\frac{W_d}{2}\right)+\theta_c$

External temperature of the object 75.3 °C

 $-T_{1}\left(W_{c}+\frac{W_{d}}{2}\right)-n_{c}\left(T_{2}\left(W_{c}\left(\lambda_{1}+1\right)+W_{d}\right)+T_{3}\left(W_{I}+W_{d}\right)\right)+\theta_{c}$

Duct

Mean temperature of the medium in the duct 68.9 °C

Temperature of duct inner wall 62.6 °C

 $-T_{4i}n_{cc}\left(W_{I}+W_{d}\right)+\theta_{e}$

Temperature of duct outer wall 57.8 °C

 $\frac{T_{4ii}W_pn_{cc}}{2}-T_{4ii}W_tn_{cc}+\theta_{di}$

Temperature rises

 $\Delta \theta_a$ Temperature rise of conductor

 $W_{I}n_{cc}\left(T_{4i}+T_{4ii}+T_{4\mu}v_{4}\right)+W_{d}n_{cc}\left(T_{4i}+T_{4ii}+T_{4ss}v_{4}\right)+W_{p}n_{cc}\left(\frac{T_{4ii}}{2}+T_{4\mu}v_{4}\right)+n_{c}\left(T_{d}W_{d}+T_{i}W_{c}\right)$

Temperature rise by dielectric losses

 $W_d\left(T_dn_c+n_{cc}\left(T_{4i}+T_{4ii}+T_{4ss}v_4\right)\right)$

Temperature rise by other buried objects $\Delta \theta_n$ 0.0 K

 $\sum_{k=1}^{q} \Delta \theta_{kp}$

Critical soil temperature rise $\Delta \theta_{m}$ 0.0 K

Losses

Ohmic

Conductor losses	W_c	23.409 W/m
$I_c^2 R_c$		
Screen and sheath losses	W_s	$1.447~\mathrm{W/m}$
$W_c \lambda_1$		
Losses in pipe	W_p	$0.000~\mathrm{W/m}$

$$W_c \lambda_3$$
 Ohmic losses per phase W_I

$$W_c \left(\lambda_1 + \lambda_2 + 1 \right)$$

Dielectric

3

Dielectric losses	W_d	0.207 W/m
$1000000C_bU_o^2\omega an\delta_i$		

Total

Total losses per phase	W_t	25.063 W/m
$W_I + W_d + W_p$		
Total losses per object	W_{tot}	25.063 W/m
$W_t n_c$		
Total losses of the system	W_{sys}	75.188 W/m

Arrangement

•		
Material of duct pipe	M_d	Plastic duct made of PE (Polyethylene)
Inside / outside diameter of duct	Di_d/Do_d	250.0 280.0 mm
Thermal resistivity of duct material	$ ho_d$	3.500 K.m/W
Specific heat capacity of duct material	σ_d	2400000.0 J/K.m ³
Absorption coefficient of solar radiation	σ_{sun}	0.4
Center position of duct 1	x_1 / y_1	0.0 / 1000.0 mm
Separation of conductors in a system	s_c	82.54 mm
Depth of laying of sources	L_c	1000.0 mm
Substitution coefficient u	u	7.143
$2L_c$		

24.856 W/m

Thermal Resistances

 $\overline{Do_d}$

i nermai Resistances			
Internal thermal resistance for current losses	T_{i}	0.625 K.m/W	
$\frac{T_{1}}{n_{c}}+T_{2}\left(\lambda_{1}+1\right)+T_{3}\left(\lambda_{1}+\lambda_{2}+1\right)$			
Internal thermal resistance for dielectric losses	T_d	0.344 K.m/W	
$\frac{T_1}{2n_c} + T_2 + T_3$			
Thermal resistance to ambient	$T_{4\mu}$	0.503 K.m/W	
$\frac{\rho_4 \ln \left(F_{eq} \left(u+\sqrt{u^2-1}\right)\right)}{2\pi}$			
Thermal resistance of medium in the duct	T_{4i}	0.169 K.m/W	
$\frac{U_d}{D_{eq}\left(0.1V_d+0.1Y_d\theta_{dm}\right)+1}$			

Thermal resistance of the duct wall	T_{4ii}	0.063 K.m/W
$rac{ ho_d ln\left(rac{Do_d}{Di_d} ight)}{2\pi}$		
Correction of thermal resistance for backfill	T_{4db}	$0.165~\mathrm{K.m/W}$
$\frac{G_b N_b \left(\rho_4 - \rho_b\right)}{2\pi}$		
Number of loaded objects in backfill	N_b	1.00
Mutual heating coefficient	F_{eq}	1.000

Other characteristics

Earthing

 ${\sf Earthing\ of\ cable\ screen/sheath}$ Single side Substitution coefficient λ_0 for eddy-currents 0.0141 λ_0

$$\frac{3d_{e}^{2}m_{0}^{2}}{4s_{c}^{2}\left(m_{0}^{2}+1\right)}$$

Substitution coefficient $\boldsymbol{\Delta}_1$ for eddy-currents Δ_1 0.0771

$$\left(\frac{d_e}{2s_c}\right)^{0.92m_0+1.66} \left(1.14m_0^{2.45}+0.33\right)$$

Substitution coefficient $\boldsymbol{\Delta}_2$ for eddy-currents 0 Δ_2

Substitution coefficient m_0 for eddy-currents $0.1585~\mathrm{Hz.m}/\Omega$

$$\frac{1.0\cdot 10^{-7}\omega}{R_e}$$

Substitution coefficient β_1 for eddy-currents 151.3208

 $0.000632455532033676\sqrt{\frac{\omega\pi}{\rho_{sh}}}$

Substitution coefficient $g_{\boldsymbol{s}}$ for eddy-currents 1.0071

$$\left(\frac{t_{sc} + t_{scs} + t_{sh}}{D_s}\right)^{1.74} (0.001 D_s \beta_1 - 1.6) + 1$$

Loss Factors

Loss factor of screen and sheath 0.062

 $\lambda_{1c} + \lambda_{1e}$

Loss factor by circulating currents 0.000 Loss factor by eddy currents 0.062

Loss factor for single point bonding 0.062 λ_{1es}

0.000 Loss factor of armour

Conductor resistance

AC resistance of conductor at operating temperature R_c 4.905e-02 $\Omega/{\rm km}$

 $R_{cDC}\left(y_p + y_s + 1\right)$

DC resistance of conductor at operating temperature 4.667e-02 $\Omega/{\rm km}$ R_{cDC}

 $R_{co}\left(\alpha_c\left(\theta_c-20\right)+1\right)$

Skin effect factor of conductor 0.0367 y_s

 $\frac{x_s^4}{0.8x_s^4 + 192}$

Factor for skin effect on conductor

$$0.000894427190999916\sqrt{\frac{fk_s\pi}{R_c}}$$

Proximity effect factor of conductors

$$\frac{d_c^2 x_p^4 \left(\frac{0.312 d_c^2}{s_c^2} + \frac{1.18}{\frac{x_p^4}{0.8x_p^4 + 192} + 0.27}\right)}{s_c^2 \left(0.8x_p^4 + 192\right)}$$

Factor for proximity effect of conductors

$$0.000894427190999916\sqrt{\frac{fk_p\pi}{R_c}}$$

1.6409 x_s

0.0143

1.6409

Cable: Verification Phase 2 case 01

Cable is used in following systems: A

General Data

Manufacturer		none
Description		Cableizer Testkabel
Rated line-to-line voltage	U_n	110.0 kV
Base voltage for tests	U_0	64.0 kV
Highest voltage for equipment	U_m	123.0 kV
System frequency	f	50.0 Hz

Conductor

Conductor shield

Insulation

Insulation screen

Screen

Sheath

Jacket

Created by Cableizer

Conductor

Number of conductors in object	n_c	1
Cross-sectional area of conductor	A_c	$500.0~\mathrm{mm}^2$
Material of conductor	M_c	Copper
Construction of conductor	c_{constr}	Round, stranded
Coating of wires	R_{co}	plain
Skin effect coefficient	k_s	1.0
Proximity effect coefficient	k_p	1.0
DC resistance of conductor at 20°C	R_{co}	3.66e-05 Ω/m
Electrical resistivity of conductor material	$ ho_c$	$1.7241\text{e-}08~\Omega.\text{m}$
Temperature coefficient of conductor material	$lpha_c$	0.00393 1/K
Specific heat capacity of conductor material	σ_c	$3450000.0 \; J/K.m^3$
External diameter of conductor	d_c	26.2 mm
Thickness of s.c. tape wrapped around conductor	t_{ct}	0 mm

Insulation

Material of insulation	M_i	Crosslinked polyethylene (XLPE)
Thickness of conductor shield	t_{cs}	1.3 mm
Thickness of insulation	t_{ins}	19.4 mm
Thickness of insulation screen	t_{is}	1.6 mm
Thickness of insulation between conductors	t	44.6000 mm
$2t_{cs} + 2t_{ct} + 2t_{ins} + 2t_{is}$		
Max. conductor temperature	$ heta_{cmax}$	90.0 °C
Max. emergency overload conductor temperature	θ_{cmaxeo}	130.0 °C
Max. short-circuit conductor temperature	θ_{cmaxsc}	250.0 °C
Relative permittivity of insulation	ϵ_i	2.5000
Loss factor of insulation	${\rm tan}\delta_i$	0.0010
Thermal resistivity of insulation	$ ho_i$	3.5 K.m/W
Specific heat capacity of insulation material	σ_i	$2400000.0 \text{ J/K.m}^3$
Capacitance of insulation	C_b	$0.1630~\mu\mathrm{F/km}$
$rac{2\epsilon_0\epsilon_i\pi}{ln\left(rac{r_L}{r_F} ight)}$		
Vacuum permittivity	ϵ_0	8.85419e-12 F/m
Radius below the insulation	r_F	14.40 mm
$r_c + t_{cs} + t_{ct}$		
Radius of the insulation	r_I	33.80 mm

Screen

 $r_F + t_{ins}$

Type of screen		Round wires
Material of screen	M_{sc}	Copper
Diameter of screen wires	t_{sc}	0.92 mm
Number of screen wires	n_{sw}	74
Cross-sectional area of screen	A_{sc}	$49.2~\mathrm{mm}^2$
$\frac{n_{sw}\pi t_{sc}^2}{4}$ Electrical resistance of screen $\frac{1000000\rho_{sc}}{A_{sc}}$ Specific electrical resistivity of screen material	R_{sc}	0.3505 $\Omega/{ m km}$
•	$ ho_{sc}$	
Temperature coefficient of screen material	$lpha_{sc}$	0.00393 1/K
Specific heat capacity of screen material	σ_{sc}	3450000.0 J/K.m ³

Sheath

n
ım
ım
m^2
Ω/km
ו

Specific electrical resistivity of sheath material Temperature coefficient of sheath material Specific heat capacity of sheath material	$ ho_{sh} \ lpha_{sh} \ \sigma_{sh}$	$\begin{array}{c} \text{1.7241e-08} \; \Omega.\text{m} \\ \text{0.00393} \; \text{1/K} \\ \text{3450000.0} \; \text{J/K.m}^3 \end{array}$
Jacket		

Material of jacket	M_{j}	Polyethylene (LD/MDPE, ST3)
Thickness of jacket	t_i	4.70 mm

External diameter of object
$$D_e$$
 82.54 mm

$$D_{a_2} + 2t_j + 2t_{jj}$$

Thermal resistivity of jacket material
$$\rho_i$$
 3.5 K.m/W

Specific heat capacity of jacket material
$$\sigma_i$$
 2400000.0 J/K.m³

Internal thermal resistances

Thermal resistance between one conductor and sheath
$$T_1$$
 0.554 K.m/W

$$\frac{\rho_{i}\ln\left(1+\frac{2t_{1}}{d_{c}}\right)}{2\pi}$$

Thermal resistance between sheath and armour
$$T_2$$
 0.000 K.m/W

$$T_{2_1} + T_{2_2}$$

Thermal resistance between sheath and 1st armour layer
$$T_{2_1}$$
 0.000 K.m/W

Thermal resistance of material between armour layers
$$T_{2_2}$$
 0.000 K.m/W Thermal resistance of jacket T_3 0.067 K.m/W

$$\frac{\rho_{j} \ln \left(\frac{D_{e}}{D_{e}-2t_{3}}\right)}{2\pi}$$

Thickness of insulation to sheath
$$t_1$$
 22.300 mm

$$\frac{\Delta d_{sh}}{2} + \frac{t}{2} + t_{scb} + t_{scs}$$

Thickness of bedding under armour
$$t_2$$
 0.000 mm

$$\frac{\Delta d_{sh}}{2} + t_{ab_1}$$

Thickness of serving over armour
$$t_3$$
 4.700 mm

$$t_j+t_{jj}$$

Mechanical

Mass of object	m	$9.93~\mathrm{kg/m}$
Heat energy content	H_c	187.54 MJ/m
Heat energy content	H_c	52.10 kWh/m
Embodied energy		745.43 MJ/kg
Embodied carbon		17.09 kgCO2/kg
Factor of permissible pull	f_{ppc}	$60.0~\mathrm{N/mm^2}$
Permissible pull force on cable	F_{nnc}	3000.0 daN

$$\frac{A_c f_{ppc} n_c}{10}$$