Calculation Report

Title Verification Phase 2 case 13 Verification

Project

Description Created

Solver

2020-05-17 11:54 2020-03-31 (bc60f)

Arrangement

Arrangement type buried None Activated options Active systems Α

Statistics

Number of iterations of the solver N_{calc} 5 728.9 A Sum of currents from all systems I_{sum} Sum of average conductor temperatures from all systems θ_{sum} 87.6 °C Number of overheated electrical systems 0 82.9 W/m Sum of losses from all systems W_{sum}

Systems

Following systems are active in the arrangement:

System	Object	Current I_c [A]	max Temp. $ heta_c \mid heta_e$ [°C]	Losses W_{sys} [W/m]
System A	Verification Phase 2 case 01	728.9	90.0 73.5	82.9

Objects

Following objects are used:

Verification Phase 2 case 01

Ambient

Ambient temperature	$ heta_a$	20.0 °C
Thermal resistivity of soil	$ ho_4$	1.5 K.m/W
Ratio thermal resistivity dry/moist soil	$v_{\scriptscriptstyle 4}$	1.000

Backfill

Calculation method acc. El-Kady et al (1985)

Backfill Area 1

Thermal resistivity backfill	$ ho_b$	0.8 K.m/W
Horizontal center of backfill	x_b	0.0 mm
Vertical center of backfill	L_{b}	1000.0 mm
Height of the backfill	h_b	400.0 mm
Width of the backfill	w_b	1300.0 mm
Geometric factor for backfill	G_{b}	1.4835

Approximate steady-state temperature field [° C] with 1.267 K.m/W

System A (High voltage cable)

Ampacity

Verification Phase 2 case 01 Name of cable

Conductor current

$$\sqrt{\frac{-\Delta \theta_{d} - \Delta \theta_{p} v_{4} + \Delta \theta_{x} \left(v_{4} - 1\right) - \theta_{a} + \theta_{c}}{R_{c} \left(T_{1} + T_{2} n_{c} \left(\lambda_{1} + 1\right) + \lambda_{3} n_{cc} \left(\frac{T_{4ii}}{2} + T_{4\mu} v_{4}\right) + \left(T_{3} n_{c} + n_{cc} \left(T_{4i} + T_{4ii} + T_{4\mu} v_{4}\right)\right) \left(\lambda_{1} + \lambda_{2} + 1\right)\right)}}$$

110.0 kV U_o Operating voltage System frequency 50.0 Hz

Number of sources in system 3 1

Number of conductors combined

Load

Continuous load 1.0 p.u.

Temperatures

Temperature of conductor 1: 90.0 | 2: 86.1 | 3: 86.6 °C

 $\Delta\theta_c + \Delta\theta_p v_4 - \Delta\theta_x \left(v_4 - 1\right) + \theta_a$

Temperature of screen/sheath 1: 75.5 | 2: 71.8 | 3: 72.2 °C

 $-T_1\left(W_c + \frac{W_d}{2}\right) + \theta_c$

 θ_e External temperature of the object 1: 73.5 | 2: 70.0 | 3: 70.4 °C

 $-T_{1}\left(W_{c}+\frac{W_{d}}{2}\right)-n_{c}\left(T_{2}\left(W_{c}\left(\lambda_{1}+1\right)+W_{d}\right)+T_{3}\left(W_{I}+W_{d}\right)\right)+\theta_{c}$

Temperature rises

 $\Delta \theta_{n}$ 1: 70.0 | 2: 66.1 | 3: 66.6 K Temperature rise of conductor

 $W_{I}n_{cc}\left(T_{4i}+T_{4ii}+T_{4\mu}v_{4}\right)+W_{d}n_{cc}\left(T_{4i}+T_{4ii}+T_{4ss}v_{4}\right)+W_{p}n_{cc}\left(\frac{T_{4ii}}{2}+T_{4\mu}v_{4}\right)+n_{c}\left(T_{d}W_{d}+T_{i}W_{c}\right)$

Temperature rise by dielectric losses 1: 0.4 | 2: 0.5 | 3: 0.5 K $\Delta \theta_d$

 $W_{d}\left(T_{d}n_{c}+n_{cc}\left(T_{4i}+T_{4ii}+T_{4ss}v_{4}\right)\right)$

Temperature rise by other buried objects $\Delta \theta_n$ 0.0 K

 $\sum_{i=1}^{q} \Delta \theta_{\rm kp}$

Critical soil temperature rise $\Delta \theta_r$ 0.0 K

Losses

Ohmic

Conductor losses W_c 1: 26.061 | 2: 25.776 | 3: 25.810 W/m

 $I_c^2 R_c$

Screen and sheath losses 1: 3.005 | 2: 0.667 | 3: 0.944 W/m

 $W_c \lambda_1$

0.000 W/m Losses in pipe W_n

 $W_c \lambda_3$

Ohmic losses per phase W_{I} 1: 29.066 | 2: 26.443 | 3: 26.754 W/m

 $W_c (\lambda_1 + \lambda_2 + 1)$

Dielectric

|--|

$$\frac{1000000C_bU_o^2\omega \tan\delta_i}{3}$$

 W_d 1: 0.207 | 2: 0.207 | 3: 0.207 W/m

Total

Total	losses	per	phase
-------	--------	-----	-------

$$W_I + W_d + W_p$$

$$W_t n_c$$

$$W_{tot}$$
 1: 29.272 | 2: 26.649 | 3: 26.961 W/m

1: 29.272 | 2: 26.649 | 3: 26.961 W/m

W_{sys}

 W_t

Arrangement

$$\frac{2L_c}{D_e}$$

$$x_1 \ / \ y_1 \quad \ \mbox{0.0} \ / \ \mbox{1000.0} \ \mbox{mm}$$

$$x_2 \ / \ y_2$$
 -82.6 / 1000.0 mm

$$x_3 / y_3$$
 82.6 / 1000.0 mm

$$L_c$$
 1000.0 mm

Thermal Resistances

$$\frac{T_{1}}{n_{c}}+T_{2}\left(\lambda_{1}+1\right)+T_{3}\left(\lambda_{1}+\lambda_{2}+1\right)$$

Internal thermal resistance for dielectric losses

$$\frac{T_1}{2n_c} + T_2 + T_3$$

Thermal resistance to ambient

$$\rho_4 \left(0.475 \ln \left(2u \right) - 0.142 \right)$$

Correction of thermal resistance for backfill

$$\frac{G_b N_b \left(\rho_4 - \rho_b\right)}{2}$$

Number of loaded objects in backfill

Mutual heating coefficient

$$\prod_{1}^{q} \frac{d_{\text{pk1}}}{d_{\text{pk2}}}$$

T_i 1: 0.629 | 2: 0.623 | 3: 0.624 K.m/W

$$T_d$$
 0.344 K.m/W

 F_{eq}

$$T_{4\mu}$$
 1: 1.829 | 2: 1.875 | 3: 1.869 K.m/W

$$N_b$$
 1: 2.83 | 2: 3.11 | 3: 3.07

Other characteristics

Earthing

Earthing of cable screen/sheath

Substitution coefficient λ_0 for eddy-currents

$$\frac{3d_e^2m_0^2}{2s_c^2\left(m_0^2+1\right)}$$

$$\frac{0.375d_e^2m_0^2}{s_c^2\left(m_0^2+1\right)}$$

$$\frac{0.375d_e^2m_0^2}{s_c^2\left(m_0^2+1\right)}$$

Single side

1: 0.0284 | 2: 0.00727 | 3: 0.00725 λ_0

Substitution coefficient Δ_1 for eddy-currents

$$0.86m_0^{3.08} \left(\frac{d_e}{2s_c}\right)^{1.4m_0+0.7}$$

$$-\frac{\sqrt{m_0} \left(\frac{d_e}{2s_c}\right)^{m_0+1} \left(0.74 m_0+1.48\right)}{\left(m_0-0.3\right)^2+2}$$

$$4.7m_0^{0.7} \left(\frac{d_e}{2s_c}\right)^{0.16m_0+2}$$

Substitution coefficient Δ_2 for eddy-currents

$$0.92 m_0^{3.7} \left(\frac{d_e}{2s_c}\right)^{m_0+2}$$

$$21m_0^{3.3} \left(\frac{d_e}{2s_c}\right)^{1.47m_0+5.06}$$

Substitution coefficient m_0 for eddy-currents

$$\frac{1.0 \cdot 10^{-7} \omega}{R_{\odot}}$$

Substitution coefficient β_1 for eddy-currents

$$0.000632455532033676\sqrt{\frac{\omega\pi}{\rho_{sh}}}$$

Substitution coefficient g_s for eddy-currents

$$\left(\frac{t_{sc} + t_{scs} + t_{sh}}{D_s}\right)^{1.74} (0.001 D_s \beta_1 - 1.6) + 1$$

 Δ_1

1: 0.0014 | 2: -0.122 | 3: 0.245

 Δ_2

1: 0 | 2: 0.000172 | 3: 0.000615

 m_0

1: $0.1592 \mid 2$: $0.1612 \mid 3$: $0.1609 \text{ Hz.m}/\Omega$

$$\beta_1$$

151.3208

1.0071

0.000

 g_s

$$\left(\frac{t_{sc} + t_{scs} + t_{sh}}{D_s}\right)^{1.74} (0.001D_s\beta_1 - 1.6) + 1$$

Loss Factors

Loss factor of screen and sheath

1: 0.115 | 2: 0.026 | 3: 0.037

 $\lambda_{1c} + \lambda_{1e}$

Loss factor by circulating currents

Loss factor by eddy currents

1: 0.115 | 2: 0.026 | 3: 0.037

 λ_{1es}

Loss factor for single point bonding

1: 0.115 | 2: 0.026 | 3: 0.037

0.000

Conductor resistance

Loss factor of armour

AC resistance of conductor at operating temperature

 R_c

1: $4.905e-02 \mid 2$: $4.851e-02 \mid 3$: $4.857e-02 \Omega/km$

 $R_{cDC}\left(y_p + y_s + 1\right)$

DC resistance of conductor at operating temperature

 R_{cDC}

1: $4.667e-02 \mid 2$: $4.611e-02 \mid 3$: $4.617e-02 \Omega/km$

 $R_{co}\left(\alpha_{c}\left(\theta_{c}-20\right)+1\right)$

Skin effect factor of conductor

1: 0.0367 | 2: 0.0375 | 3: 0.0374

$$\frac{x_s^4}{0.8x_s^4 + 192}$$

Factor for skin effect on conductor

1: 1.6409 | 2: 1.6509 | 3: 1.6497

Proximity effect factor of conductors

$$\frac{d_c^2 x_p^4 \left(\frac{0.312 d_c^2}{s_c^2} + \frac{1.18}{\frac{x_p^4}{0.8x_p^4 + 192} + 0.27}\right)}{s_c^2 \left(0.8x_p^4 + 192\right)}$$

Factor for proximity effect of conductors

$$0.000894427190999916\sqrt{\frac{fk_p\pi}{R_c}}$$

 $1:\ 0.0143\ |\ 2:\ 0.0146\ |\ 3:\ 0.0146$ y_p

1: 1.6409 | 2: 1.6509 | 3: 1.6497 x_p

Cable: Verification Phase 2 case 01

Cable is used in following systems: A

General Data

Manufacturer none Description Cableizer Testkabel Rated line-to-line voltage U_n 110.0 kV Base voltage for tests 64.0 kV U_0 Highest voltage for equipment U_m 123.0 kV 50.0 Hz System frequency

Conductor

Conductor shield

Insulation

Insulation screen

Screen

Sheath

Jacket

Created by Cableizer

Conductor

Number of conductors in object Cross-sectional area of conductor $500.0~\mathrm{mm}^2$ A_c Material of conductor M_c Copper Construction of conductor Round, stranded c_{constr} R_{co} Coating of wires plain Skin effect coefficient k_s 1.0 Proximity effect coefficient 1.0 k_p DC resistance of conductor at 20°C 3.66e-05 Ω/m R_{co} Electrical resistivity of conductor material 1.7241e-08 $\Omega.m$ Temperature coefficient of conductor material 0.00393 1/K α_c $3450000.0 \text{ J/K.m}^3$ Specific heat capacity of conductor material σ_c External diameter of conductor 26.2 mm d_c Thickness of s.c. tape wrapped around conductor 0 mm t_{ct}

Insulation

Material of insulation	M_{i}	Crosslinked polyethylene (XLPE)
Thickness of conductor shield	t_{cs}	1.3 mm
Thickness of insulation	t_{ins}	19.4 mm
Thickness of insulation screen	t_{is}	1.6 mm
Thickness of insulation between conductors	t	44.6000 mm
$2t_{cs} + 2t_{ct} + 2t_{ins} + 2t_{is}$		
Max. conductor temperature	θ_{cmax}	90.0 °C
Max. emergency overload conductor temperature	θ_{cmaxeo}	130.0 °C
Max. short-circuit conductor temperature	θ_{cmaxsc}	250.0 °C
Relative permittivity of insulation	ϵ_i	2.5000
Loss factor of insulation	$ an \delta_i$	0.0010
Thermal resistivity of insulation	$ ho_i$	3.5 K.m/W
Specific heat capacity of insulation material	σ_i	2400000.0 $J/K.m^3$
Capacitance of insulation	C_b	0.1630 $\mu \mathrm{F/km}$
$rac{2\epsilon_0\epsilon_i\pi}{ln\left(rac{r_I}{r_F} ight)}$		
Vacuum permittivity	ϵ_0	8.85419e-12 F/m
Radius below the insulation	r_F	14.40 mm
$r_c + t_{cs} + t_{ct}$		
Radius of the insulation	r_I	33.80 mm

Screen

 $r_F + t_{ins}$

Type of screen		Round wires
Material of screen	M_{sc}	Copper
Diameter of screen wires	t_{sc}	0.92 mm
Number of screen wires	n_{sw}	74
Cross-sectional area of screen	A_{sc}	49.2 mm^2
$rac{n_{sw}\pi t_{sc}^2}{4}$ Electrical resistance of screen	R_{sc}	0.3505 $\Omega/{ m km}$
$\frac{1000000\rho_{sc}}{A_{sc}}$		
Specific electrical resistivity of screen material	$ ho_{sc}$	1.7241 e-08 $\Omega.m$
Temperature coefficient of screen material	α_{sc}	0.00393 1/K
Specific heat capacity of screen material	σ_{sc}	3450000.0 J/K.m ³

Sheath

Material of sheath	M_{sh}	Copper
Thickness of the sheath	t_{sh}	0.25 mm
Corrugated sheath		No
Mean diameter of sheath	d_{sh}	72.89 mm
$D_{it} + \Delta d_{sh} + t_{sh}$		
Mean external diameter of the sheath	D_s	73.14 mm
$D_{oc} - \Delta d_{sh}$		
Cross-sectional area of sheath	A_{sh}	$57.2~\mathrm{mm}^2$
$d_{sh}\pi t_{sh}$		
Electrical resistance of sheath	R_{sh}	$\rm 0.3012~\Omega/km$
$1000000\rho_{sh}$		
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		

Specific electrical resistivity of sheath material	$ ho_{sh}$	$1.7241\text{e-}08~\Omega.\text{m}$
Temperature coefficient of sheath material	$lpha_{sh}$	0.00393 1/K
Specific heat capacity of sheath material	σ_{sh}	$3450000.0\ J/K.m^3$
lacket		

Jacket

Material of jacket	M_{j}	Polyethylene (LD/MDPE, ST3)
Thickness of jacket	t_{j}	4.70 mm
External diameter of object	D_e	82.54 mm

$$D_{a_2}+2t_j+2t_{jj}\\$$

Thermal resistivity of jacket material	$ ho_j$	3.5 K.m/W
Specific heat capacity of jacket material	σ_i	2400000.0 J/K.m ³

Internal thermal resistances

Thermal resistance between one conductor and sheath
$$$T_{1}$$$
 0.554 K.m/W

$$\frac{\rho_i \ln \left(1+\frac{2t_1}{d_c}\right)}{2\pi}$$

Thermal resistance between sheath and armour
$$$T_{\rm 2}$$$
 0.000 K.m/W

$$T_{2_1} + T_{2_2}$$

I hermal resistance between sheath and 1st armour layer	$T_{\mathbf{2_1}}$	0.000 K.m/VV
Thermal resistance of material between armour layers	T_{2_2}	$0.000~\mathrm{K.m/W}$
Thermal resistance of jacket	T_{2}	0.067 K.m/W

$$\frac{\rho_{j}\ln\left(\frac{D_{e}}{D_{e}-2t_{3}}\right)}{2\pi}$$

Thickness of insulation to sheath
$$t_1$$
 22.300 mm

$$\frac{\Delta d_{sh}}{2} + \frac{t}{2} + t_{scb} + t_{scs}$$
 Thickness of bedding under armour

Thickness of bedding under armour
$$t_2$$
 0.000 mm

$$\frac{\Delta d_{sh}}{2} + t_{ab_1}$$

Thickness of serving over armour
$$t_3$$
 4.700 mm

$$t_j+t_{jj}$$

Mechanical

Mass of object	m	$9.93~\mathrm{kg/m}$
Heat energy content	H_c	187.54 MJ/m
Heat energy content	H_c	52.10 kWh/m
Embodied energy		745.43 MJ/kg
Embodied carbon		17.09 kgCO2/kg
Factor of permissible pull	f_{ppc}	$60.0~\textrm{N}/\textrm{mm}^2$
Permissible pull force on cable	F_{ppc}	3000.0 daN

$$\frac{A_c f_{ppc} n_c}{10}$$