Grashof number, object to gas

Symbol
$\mathrm{Gr}_{og}$
Formulae
$\frac{\beta_{gas} \delta _{d}^{3} g \left(\theta_{e} - \theta_{film}\right)}{\nu_{gas}^{2}}$Riser closed at both ends (Anders)
$\frac{\beta_{gas} \delta _{d}^{4} g \left(\theta_{e} - \theta_{film}\right)}{L_{d} \nu_{gas}^{2}}$Riser open at both ends (Anders/Hartlein & Black)
$\frac{L_{d}^{3} \beta_{gas} g \left(\theta_{e} - \theta_{film}\right)}{\nu_{gas}^{2}}$Riser open at top and closed at bottom (Anders)
$\frac{L_{d}^{3} \beta_{gas} g \left(\theta_{e} - \theta_{film}\right)}{\nu_{gas}^{2}}$Riser closed at both ends (Hartlein & Black)
$\frac{L_{d}^{3} \beta_{gas} g \left(\theta_{e} - \theta_{film}\right)}{\nu_{gas}^{2}}$Riser open at both ends, 133 ≤ $Ra$ ≤ 7000 (Hartlein & Black IIa)
$\frac{L_{d}^{3} \beta_{gas} g \left(\theta_{e} - \theta_{film}\right)}{\nu_{gas}^{2}}$Riser open at both ends, $Ra$ > 7000 (Hartlein & Black IIb)
$\frac{L_{d}^{3} \beta_{gas} g \left(\theta_{e} - \theta_{film}\right)}{\nu_{gas}^{2}}$Riser open at top and closed at bottom (Hartlein & Black)
$\nu_{gas}$
$\theta_{film}$
Used in
$\mathrm{Nu}_{og}$
$\mathrm{Ra}_{gas}$