# Phase current for EMF calculation

The magnetic field is calculated based on the law of Biot-Savart where each subconductor is represented by a filament current extending along its axis. The current for each phase at the time step $t_{EMF}$ is given as follows.

Symbol
$I_{EMF}$
Unit
A
Formulae
 $\sqrt{2} I_{c} \cos{\left(\alpha_{f} + \omega t_{EMF} \right)}$ 3-phase system with relative phase angle 120$^{\circ}$, phase R (L1) $\sqrt{2} I_{c} \cos{\left(\alpha_{f} + \omega t_{EMF} - \frac{2 \pi}{3} \right)}$ 3-phase system with relative phase angle 120$^{\circ}$, phase S (L2) $\sqrt{2} I_{c} \cos{\left(\alpha_{f} + \omega t_{EMF} + \frac{2 \pi}{3} \right)}$ 3-phase system with relative phase angle 120$^{\circ}$, phase T (L3) $\sqrt{2} I_{c} \cos{\left(\alpha_{f} + \omega t_{EMF} \right)}$ 2-phase system with relative phase angle 180$^{\circ}$, phase U (L1) $- \sqrt{2} I_{c} \cos{\left(\alpha_{f} + \omega t_{EMF} \right)}$ 2-phase system with relative phase angle 180$^{\circ}$, phase V (L2) $\sqrt{2} I_{c} \cos{\left(\alpha_{f} + \omega t_{EMF} \right)}$ Mono-phase system (L1) $I_{c}$ DC system, phase P (L1) $- I_{c}$ DC system, phase N (L2)
Related
$\alpha_{f}$
Phase shift [$^{\circ}$]
$B_{EMF}$
$\Delta t$
$I_{c}$
$j_{max}$
Phase angle range [$^{\circ}$]
$\omega$
$t_{EMF}$
Used in
$H_{x}$
$H_{y}$