The magnetic field is calculated based on the law of Biot-Savart where each subconductor is represented by a filament current extending along its axis. The current for each phase at the time step $t_{EMF}$ is given as follows.

Symbol
$I_{\mathrm{EMF}}$
Unit
A
Formulae
$\sqrt{2} I_{\mathrm{c}} \cos{\left (\alpha_{\mathrm{f}} + \omega t_{\mathrm{EMF}} \right )}$3-phase system with relative phase angle 120°, phase R (L1)
$\sqrt{2} I_{\mathrm{c}} \cos{\left (\alpha_{\mathrm{f}} + \omega t_{\mathrm{EMF}} - \frac{2 \pi}{3} \right )}$3-phase system with relative phase angle 120°, phase S (L2)
$\sqrt{2} I_{\mathrm{c}} \cos{\left (\alpha_{\mathrm{f}} + \omega t_{\mathrm{EMF}} + \frac{2 \pi}{3} \right )}$3-phase system with relative phase angle 120°, phase T (L3)
$\sqrt{2} I_{\mathrm{c}} \cos{\left (\alpha_{\mathrm{f}} + \omega t_{\mathrm{EMF}} \right )}$2-phase system with relative phase angle 180°, phase U (L1)
$- \sqrt{2} I_{\mathrm{c}} \cos{\left (\alpha_{\mathrm{f}} + \omega t_{\mathrm{EMF}} \right )}$2-phase system with relative phase angle 180°, phase V (L2)
$\sqrt{2} I_{\mathrm{c}} \cos{\left (\alpha_{\mathrm{f}} + \omega t_{\mathrm{EMF}} \right )}$Mono-phase system (L1)
$I_{\mathrm{c}}$DC system, phase P (L1)
$- I_{\mathrm{c}}$DC system, phase N (L2)
Related
$\alpha_{\mathrm{f}}$
$B_{\mathrm{EMF}}$
$\Delta t$
$I_{\mathrm{c}}$
$j_{\mathrm{max}}$
$\omega$
Used in
$H_{\mathrm{x}}$
$H_{\mathrm{y}}$