Phase current for EMF calculation

The magnetic field is calculated based on the law of Biot-Savart where each subconductor is represented by a filament current extending along its axis. The current for each phase at the time step $t_{EMF}$ is given as follows.

Symbol
$I_{EMF}$
Unit
A
Formulae
 $\sqrt{2} I_c cos\left(\omega t_{EMF}+\alpha_f\right)$ 3-phase system with relative phase angle 120°, phase R (L1) $\sqrt{2} I_c cos\left(\omega t_{EMF}-\frac{2\pi}{3}+\alpha_f\right)$ 3-phase system with relative phase angle 120°, phase S (L2) $\sqrt{2} I_c cos\left(\omega t_{EMF}+\frac{2\pi}{3}+\alpha_f\right)$ 3-phase system with relative phase angle 120°, phase T (L3) $\sqrt{2} I_c cos\left(\omega t_{EMF}+\alpha_f\right)$ 2-phase system with relative phase angle 180°, phase U (L1) $-\sqrt{2} I_c cos\left(\omega t_{EMF}+\alpha_f\right)$ 2-phase system with relative phase angle 180°, phase V (L2) $\sqrt{2} I_c cos\left(\omega t_{EMF}+\alpha_f\right)$ Mono-phase system (L1) $I_c$ DC system, phase P (L1) $-I_c$ DC system, phase N (L2)
Related
$\alpha_f$
$B_{EMF}$
$\Delta t$
$I_c$
$j_{max}$
$\omega$
$t_{EMF}$
Used in
$H_x$
$H_y$