Phase current for EMF calculation

The magnetic field is calculated based on the law of Biot-Savart where each subconductor is represented by a filament current extending along its axis. The current for each phase at the time step $t_{EMF}$ is given as follows.

Symbol
$I_{EMF}$
Unit
A
Formulae
$\sqrt{2} I_{c} \cos{\left(\alpha_{f} + \omega t_{EMF} \right)}$3-phase system with relative phase angle 120$^{\circ}$, phase R (L1)
$\sqrt{2} I_{c} \cos{\left(\alpha_{f} + \omega t_{EMF} - \frac{2 \pi}{3} \right)}$3-phase system with relative phase angle 120$^{\circ}$, phase S (L2)
$\sqrt{2} I_{c} \cos{\left(\alpha_{f} + \omega t_{EMF} + \frac{2 \pi}{3} \right)}$3-phase system with relative phase angle 120$^{\circ}$, phase T (L3)
$\sqrt{2} I_{c} \cos{\left(\alpha_{f} + \omega t_{EMF} \right)}$2-phase system with relative phase angle 180$^{\circ}$, phase U (L1)
$- \sqrt{2} I_{c} \cos{\left(\alpha_{f} + \omega t_{EMF} \right)}$2-phase system with relative phase angle 180$^{\circ}$, phase V (L2)
$\sqrt{2} I_{c} \cos{\left(\alpha_{f} + \omega t_{EMF} \right)}$Mono-phase system (L1)
$I_{c}$DC system, phase P (L1)
$- I_{c}$DC system, phase N (L2)
Related
$\alpha_{f}$
Phase shift [$^{\circ}$]
$B_{EMF}$
$\Delta t$
$j_{max}$
Phase angle range [$^{\circ}$]
$\omega$
Used in
$H_{x}$