Short-circuit current calculated on an adiabatic basis (r.m.s over duration).

Symbol
$I_{\mathrm{kAD}}$
Unit
kA
Formulae
$\sqrt{\frac{K_{\mathrm{k}}^{2} S_{\mathrm{k}}^{2}}{t_{\mathrm{k}}} \ln{\left (\frac{\beta_{\mathrm{k}} + \theta_{\mathrm{kf}}}{\beta_{\mathrm{k}} + \theta_{\mathrm{ki}}} \right )}}$calculation of short-circuit current
$\frac{I_{\mathrm{kSC}}}{\epsilon_{\mathrm{k}}}$calculation of short-circuit temperature
Related
$\beta_{\mathrm{k}}$
$\epsilon_{\mathrm{k}}$
$I_{\mathrm{kSC}}$
$K_{\mathrm{k}}$
$S_{\mathrm{k}}$
$t_{\mathrm{k}}$
$\theta_{\mathrm{kf}}$
$\theta_{\mathrm{ki}}$
Used in
$I_{\mathrm{k}}$
$\theta_{\mathrm{kf}}$