Mutual thermal resistance between cable and heat source with several crossings.

Symbol
$T_{\mathrm{mh_{\mathrm{v}}}}$
Unit
K.m/W
Formulae
$\ln{\left (\frac{\Delta z^{2} \nu^{2} \sin^{2}{\left (\beta_{h} - \beta_{r} \right )} + \left(L_{\mathrm{h}} + L_{\mathrm{r}}\right)^{2}}{\Delta z^{2} \nu^{2} \sin^{2}{\left (\beta_{h} - \beta_{r} \right )} + \left(- L_{\mathrm{h}} + L_{\mathrm{r}}\right)^{2}} \right )} e^{- \Delta z \gamma_{\mathrm{X}} \nu}$single source crossing
$\ln{\left (\frac{\left(L_{\mathrm{h}} + L_{\mathrm{r}}\right)^{2} + \left(\Delta z \nu + \left|{- z_{\mathrm{h}} + z_{\mathrm{r}}}\right|\right)^{2} \sin^{2}{\left (\beta_{h} - \beta_{r} \right )}}{\left(- L_{\mathrm{h}} + L_{\mathrm{r}}\right)^{2} + \left(\Delta z \nu + \left|{- z_{\mathrm{h}} + z_{\mathrm{r}}}\right|\right)^{2} \sin^{2}{\left (\beta_{h} - \beta_{r} \right )}} \right )} e^{- \Delta z \gamma_{\mathrm{X}} \nu}$several crossings
Related
$\Delta z$
$\gamma_{\mathrm{X}}$
$z_{\mathrm{h}}$
$z_{\mathrm{r}}$