Mutual thermal resistance per slice

Mutual thermal resistance between the rated object and the crossing object with several crossings.

Symbol
$T_{mh_{v}}$
Unit
K.m/W
Formulae
$\ln{\left(\frac{\Delta z^{2} \nu^{2} \sin^{2}{\left(\frac{\beta_{h}}{2} - \frac{\beta_{r}}{2} \right)} + \left(L_{h} + L_{r}\right)^{2}}{\Delta z^{2} \nu^{2} \sin^{2}{\left(\frac{\beta_{h}}{2} - \frac{\beta_{r}}{2} \right)} + \left(- L_{h} + L_{r}\right)^{2}} \right)} e^{- \Delta z \gamma_{X} \nu}$single source crossing
$\ln{\left(\frac{\left(L_{h} + L_{r}\right)^{2} + \left(\Delta z \nu + \operatorname{Abs}{\left(- z_{h} + z_{r} \right)}\right)^{2} \sin^{2}{\left(\frac{\beta_{h}}{2} - \frac{\beta_{r}}{2} \right)}}{\left(- L_{h} + L_{r}\right)^{2} + \left(\Delta z \nu + \operatorname{Abs}{\left(- z_{h} + z_{r} \right)}\right)^{2} \sin^{2}{\left(\frac{\beta_{h}}{2} - \frac{\beta_{r}}{2} \right)}} \right)} e^{- \Delta z \gamma_{X} \nu}$several crossings
Related
$\Delta z$