Factor for apportioning the thermal capacitance of the insulation (dielectric) for calculations of partial transients for long durations.

The last case is the factor for apportioning the thermal capacitance of a dielectric when calculating transient caused by dieletric loss for both long- and short-term transients

Symbol
$p_{\mathrm{i}}$
Unit
-
Formulae
$\frac{0.5}{\ln{\left (\frac{D_{\mathrm{i}}}{d_{\mathrm{ct}}} \right )}} - \frac{1}{\frac{D_{\mathrm{i}}^{2}}{d_{\mathrm{ct}}^{2}} - 1}$long-term transients
$\frac{1}{\ln{\left (\frac{D_{\mathrm{i}}}{d_{\mathrm{ct}}} \right )}} - \frac{1}{\frac{D_{\mathrm{i}}}{d_{\mathrm{ct}}} - 1}$short-term transients
$\frac{1}{\left(\frac{D_{\mathrm{i}}^{2}}{d_{\mathrm{ct}}^{2}} - 1\right) \ln^{2}{\left (\frac{D_{\mathrm{i}}}{d_{\mathrm{ct}}} \right )}} \left(\frac{D_{\mathrm{i}}^{2}}{d_{\mathrm{ct}}^{2}} \ln{\left (\frac{D_{\mathrm{i}}}{d_{\mathrm{ct}}} \right )} - \frac{D_{\mathrm{i}}^{2}}{2 d_{\mathrm{ct}}^{2}} - \ln^{2}{\left (\frac{D_{\mathrm{i}}}{d_{\mathrm{ct}}} \right )} + \frac{1}{2}\right)$dielectric loss
$D_{\mathrm{i}}$
Used in
$Q_{\mathrm{A}}$
$Q_{\mathrm{B_{\mathrm{i}}}}$