# External temperature of the object

With crossing heat sources, a temperature rise of $\Delta\theta_{0x}$ applies at the hottest point.

Symbol
$\theta_e$
Unit
°C
Formulae
 $\theta_c-T_1 \left(W_c+\frac{W_d}{2}\right)+n_c T_2 \left(W_c \left(1+\lambda_1\right)+W_d\right)+n_c T_3 \left(W_I+W_d\right)$ Cables $\theta_{hs}-W_{hs} T_{hs}$ Heat sources $\theta_a+\Delta \theta_s$ PAC/GIL in air $\theta_a+v_4 \Delta \theta_p+\left(1-v_4\right) \Delta \theta_x+W_{tot} v_4 T_{4\mu}$ PAC/GIL buried without duct $\theta_{di}+T_{4i} n_{cc} W_{tot}$ PAC/GIL with duct $\theta_{at}+\Delta \theta_s$ PAC/GIL in trough $\theta_a+T_{4iii} W_{tot}$ PAC/GIL in channel (Heinhold) $\sum_{i=0}^{n-1} \theta_{e,i}$ air-filled pipe with objects
Related
$\Delta \theta_{0x}$
$\Delta \theta_p$
$\Delta \theta_s$
$\Delta \theta_x$
$T_1$
$T_2$
$T_{4i}$
$T_{4iii}$
$T_{4\mu}$
$T_{hs}$
$\theta_a$
$\theta_{at}$
$\theta_c$
$\theta_{di}$
$\theta_{hs}$
$W_c$
$W_{hs}$
$W_I$
$W_{tot}$
Used in
$\Delta \theta_{ce}$
$\Delta \theta_{gas}$
$\Delta \theta_s$
$\mathrm{Gr}_{gd}$
$\mathrm{Gr}_{prot}$
$I_c$
$T_{4i}$
$T_{4iii}$
$T_{conv,od}$
$T_{conv,sa}$
$T_{rad,od}$
$T_{rad,sa}$
$T_{rad,sun}$
$\theta_c$
$\theta_{de}$
$\theta_{di}$
$\theta_{dm}$
$\theta_{encl}$
$\theta_{film}$
$\theta_{gas}$
$\theta_{hs}$
$W_{conv,od}$
$W_{conv,og}$
$W_{conv,sa}$
$W_{hs}$
$W_{rad,od}$
$W_{rad,sa}$