The configuration of cables can affect cable tension. A weight correction factor is used in the tension equations to account for this effect. The value for the weight correction factor is determined from the equations that follow.

Symbol
$w_{\mathrm{p}}$
Unit
-
Formulae
$1$1 cable (single)
$\frac{1}{\sqrt{- \frac{D_{\mathrm{e}}^{2}}{\left(- D_{\mathrm{e}} + Di_{\mathrm{d}}\right)^{2}} + 1}}$2 cables (dual)
$\frac{1}{\sqrt{- \frac{D_{\mathrm{e}}^{2}}{\left(- D_{\mathrm{e}} + Di_{\mathrm{d}}\right)^{2}} + 1}}$3 cables (triangular)
$\frac{1.33333333333333 D_{\mathrm{e}}^{2}}{\left(- D_{\mathrm{e}} + Di_{\mathrm{d}}\right)^{2}} + 1$3 cables (cradled)
$\frac{2 D_{\mathrm{e}}^{2}}{\left(- D_{\mathrm{e}} + Di_{\mathrm{d}}\right)^{2}} + 1$4 cables (diamond)
Related
$D_{\mathrm{e}}$
$Di_{\mathrm{d}}$
Used in
$F_{\mathrm{cable}}$
$F_{\mathrm{out}}$
$SP_{\mathrm{p}}$