Difference between the surface temperature of a cable or duct in air and the ambient temperature.

This equation is solved by iteration with an initial value for $\Delta\theta_s$ of 16°C.

Symbol
$\Delta \theta_{\mathrm{s}}$
Unit
K
Formulae
$\frac{\Delta \theta_{\mathrm{s}}}{2} + \frac{\Delta \theta_{\mathrm{sun}}}{2} + \frac{T_{\mathrm{4iii}} W_{\mathrm{t}}}{2} n_{\mathrm{cc}}$cables in air
$\frac{\Delta \theta_{\mathrm{c}} + \Delta \theta_{\mathrm{d}}}{\Delta \theta_{\mathrm{s}}^{0.25} K_{\mathrm{A}} + 1}$cables in trough
$\frac{\Delta \theta_{\mathrm{s}}}{2} + \frac{T_{\mathrm{4iii}} W_{\mathrm{t}}}{2} n_{\mathrm{cc}}$cables in trough (Anders et al 2010)
$\frac{\Delta \theta_{\mathrm{s}}}{2} + \frac{\Delta \theta_{\mathrm{sun}}}{2} + \frac{T_{\mathrm{4iii}} W_{\mathrm{tot}}}{2}$GIL in air
Related
$\Delta \theta_{\mathrm{c}}$
$\Delta \theta_{\mathrm{d}}$
$\Delta \theta_{\mathrm{sun}}$
$n_{\mathrm{cc}}$
$W_{\mathrm{t}}$
$W_{\mathrm{tot}}$
Used in
$T_{\mathrm{4iii}}$
$\theta_{\mathrm{e}}$