Induced shield voltage in phase c

The voltage gradient induced in a cable shield may be considered as a special case in which the parallel conductor is a shield at a spacing from the conductor that it embraces equal to the mean radius of the shield. When no other current-carrying conductor is in the vicinity.

Symbol
$E_c$
Unit
V/m
Formulae
$+j \omega I_{kc} 2{\cdot}{10}^{-7} \left(\frac{-1}{2} \ln\left(\frac{2{S_{bc}}^2}{d S_{ac}}\right)-j \frac{\sqrt{3}}{2} \ln\left(\frac{2S_{ac}}{d}\right)\right)$three-phase symmetrical fault, general case, without transposition
$+j \omega I_{kc} 2{\cdot}{10}^{-7} \left(\frac{-1}{2}-j \frac{\sqrt{3}}{2}\right) \ln\left(\frac{2S_m}{d}\right)$three-phase symmetrical fault, trefoil, without transposition
$+j \omega I_{ka} 2{\cdot}{10}^{-7} \left(\frac{-1}{2} \ln\left(\frac{S_m}{d}\right)-j \frac{\sqrt{3}}{2} \ln\left(\frac{4S_m}{d}\right)\right)$three-phase symmetrical fault, flat, without transposition
$+j \omega I_{ka} 2{\cdot}{10}^{-7} \ln\left(\frac{GMD}{d}\right)$three-phase symmetrical fault, with regular transposition
$-j \omega I_{ka} 2{\cdot}{10}^{-7} \ln\left(\frac{4S_m}{d}\right)$phase-to-phase fault between phases a + b
$I_{kc} \left(R_{ct}+j \omega 2{\cdot}{10}^{-7} \ln\left(\frac{S_{ap} S_{cp}}{r_g S_{ac}}\right)\right)$single-phase ground fault in phase a, single-side bonded (solidly grounded neutral)
$+j \omega I_{kc} 2{\cdot}{10}^{-7} \ln\left(\left(\frac{S_m}{d}\right)^2 \frac{d}{r_g}\right)$highest single-phase ground fault in phase a, single-side bonded (without Rct)
$\frac{I_{kx}}{3} \left(Z_{ss}+2Z_{sg}\right)-I_{kc} Z_{sg}$single-phase ground fault in phase a minor section 1, cross-bonded, trefoil
$\frac{I_{kx}}{3} \left(Z_{ss}+Z_{oog}+Z_{oig}\right)-I_{kc} Z_{oog}$single-phase ground fault in phase a minor section 1, cross-bonded, flat
$\frac{I_{kc}}{2} \left(R_{ct}+j \omega 2{\cdot}{10}^{-7} \ln\left(\frac{D_E}{S_{ac}}\right)\right)$single-phase ground fault in phase a, single-side bonded (without ecc)