# Loss factor for single point bonding

This is the loss factor caused by eddy currents for sheath bonded at a single point.

Symbol
$\lambda_{1es}$
Formulae
 $\frac{R_{e} \left(8.33333333333333 \cdot 10^{-14} \beta_{1}^{4} t_{sh}^{4} + g_{s} \lambda_{0} \left(\Delta _{1} + \Delta _{2} + 1\right)\right)}{R_{c}}$ single-core cables $\frac{4.0 \cdot 10^{-14} \omega^{2} s_{c}^{2} \left(1 + \frac{s_{c}^{2}}{4 d_{e}^{2}}\right)}{R_{c} R_{e} d_{e}^{2}}$ two-core cables with round conductors $\frac{1.08 \cdot 10^{-15} \omega^{2} \left(12.2 + \frac{\left(0.74 d_{c} + t\right)^{2}}{d_{e}^{2}}\right) \left(0.74 d_{c} + t\right)^{2}}{R_{c} R_{e} d_{e}^{2}}$ two-core cables with sector-shaped conductors $\frac{3 R_{e} \left(\frac{4 s_{c}^{2}}{3 d_{e}^{2} \left(\frac{100000000000000.0 R_{e}^{2}}{\omega^{2}} + 1\right)} + \frac{16 s_{c}^{4}}{9 d_{e}^{4} \left(\frac{400000000000000.0 R_{e}^{2}}{\omega^{2}} + 1\right)}\right)}{R_{c}}$ three-core cables with round conductors, $R_{sh}$ <= 100$\mu \Omega$/m $\frac{4.26666666666667 \cdot 10^{-14} \omega^{2} s_{c}^{2}}{R_{c} R_{e} d_{e}^{2}}$ three-core cables with round conductors, $R_{sh}$ > 100$\mu \Omega$/m $\frac{0.94 R_{e} \left(d_{c} + t\right)^{2}}{R_{c} d_{e}^{2} \left(\frac{100000000000000.0 R_{e}^{2}}{\omega^{2}} + 1\right)}$ three-core cables with sector-shaped conductors $0$ otherwise $\frac{R_{encl} \left(8.33333333333333 \cdot 10^{-14} \beta_{1}^{4} t_{encl}^{4} + g_{s} \lambda_{0} \left(\Delta _{1} + \Delta _{2} + 1\right)\right)}{R_{c}}$ GIL
$d_{c}$
$d_{e}$
$\omega$
$R_{c}$
$R_{encl}$
$s_{c}$
$t_{encl}$
$t_{sh}$
Used in
$\lambda_{1e}$