emergency load current which may subsequently be applied for time i so that the conductor temperature rise above ambient at the end of the period of emergency loading is $θ_{max}$.

The method only holds for values of $I_2$ ≤ 2.5 $I_R$

Symbol
$I_{\mathrm{2}}$
Unit
A
Formulae
$I_{\mathrm{R}} \sqrt{\frac{\Delta \theta_{\mathrm{R_{\mathrm{\infty}}}} R_{\mathrm{R}}}{\Delta \theta_{\mathrm{R_{\mathrm{t}}}} R_{\mathrm{max}}} \left(- \frac{R_{\mathrm{1}} h_{\mathrm{1}}^{2}}{R_{\mathrm{R}}} + r_{\mathrm{\theta}}\right) + \frac{R_{\mathrm{1}} h_{\mathrm{1}}^{2}}{R_{\mathrm{max}}}}$
Related
$\Delta \theta_{\mathrm{R_{\mathrm{\infty}}}}$
$\Delta \theta_{\mathrm{R_{\mathrm{t}}}}$
$h_{\mathrm{1}}$
$r_{\mathrm{\theta}}$
Used in
$h_{\mathrm{2}}$